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Wetting in Potts and Blume-Capel Models 
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We discuss the wetting of the interface between two ordered phases by the dis- 
ordered one in the Ports model with q large. We argue that a "low-temperature" 
expansion can be used in this situation, with log q replacing /L This model is 
analogous to the Blume-Capel model at low temperatures, which we use as an 
example to review the low-temperature expansions. 
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1. I N T R O D U C T I O N  

Wetting may occur when three or more phases (A, B, C,...) coexist. It 
consists of the appearance of a thick (macroscopic) layer of the C phase at 
an interface between the A and the B phases. This phenomenon has been 
observed experimentally and in computer simulation (for a review, see 
Ref. 1). It has also been investigated by mean field theory ~2 4) and by low- 
temperature expansions. (s'6) In this note we use the method of low-tem- 
perature expansions (7'8) to analyze the wetting of two ordered phases by 
the disordered one in the q-state Potts model, for q large. We first review 
low-temperature expansions in a simple example: the (generalized) 
Blume Capel model. There we make explicit the connection between these 
expansions and the rigorous Pirogov-Sinai theory of first-order phase 
transition. (7'9) We argue that the Potts model, at the transition temperature 
where ordered and disordered states coexist, is very similar, for large q, to 
the Blume-Capel model at low temperatures. Then we carry out for the 
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Potts model a q--~/d expansion similar to the one done in e -~ for the 
Blume-Capel model. 

The criterion for deciding whether phase C wets an A B interface is 
obtained by first computing the surface tensions between all possible inter- 
faces, A-B, A-C, B-C. Then, if 

TAB • TAC -]- TBC (1.1) 

one expects a thick layer of the C phase to form itself at the A-B interface, 
while, if the reverse inequality holds, then the A-B interface should be thin. 
However, it is not immediately obvious how to define these surface ten- 
sions. Usually, e.g., in the Ising model, they are defined by imposing dif- 
ferent boundary conditions (b.c.), say A on the top and B on the bottom of 
a large box, and then taking the difference between the free energy of that 
system and the average of the free energies with homogeneous b.c. (all A or 
all B). But, if wetting by the C phase does occur, then this A-B surface ten- 
sion will actually equal TAC+~BC, SO that the strict inequality in (1.1) 
never occurs for these "usual" tensions. 

A similar problem occurs when one wants to compute a bulk phase 
diagram at low temperatures. Suppose that we have two possible phases, A 
and B; then one is supposed to compute the free energy of each phase and 
see which is the lowest. This gives the true thermodynamic phase; equality 
of these free energies yields the coexistence line. However, again, if one 
carries out an honest computation, one always obtains, independent of the 
b.c., the same (true) free energy in the thermodynamic limit. 

Nevertheless, for the bulk phase diagram, the comparison between free 
energies has a well-defined meaning in (low-temperature) perturbation 
theory. One computes the free energy of a "gas" of low-energy excitations 
of each of the ground states up to certain order in a perturbation series. 
These free energies will depend, in general, on which ground state is con- 
sidered. The scheme described above to find the true thermodynamic phase 
becomes meaningful when applied to these "restricted" free energies. This is 
reviewed in Section 2, in the special, but typical, case of the Blume-Capel 
model. We emphasize that, for the bulk phase diagram, this perturbative 
scheme can be entirely justified using the Pirogov-Sinai theory/7'9) 

In order to decide whether a given inteface is wetted or not by a third 
phase, we apply the same method as in the bulk, i.e., we associate to each 
interface a restricted surface tension that takes into account only the lowest 
energy excitations of the interface. This method has not been shown to be 
rigorous in this context (for some steps in this direction, see Ref. 10), but 
we feel quite confident that it gives the correct answers. We apply it first to 
the generalized Blume-Capel model (Section 2), and then to the Potts 
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model for large q. There, we start by explaining why in the Potts model, the 
large-q limit can be regarded as a low-temperature limit, while fl plays the 
role of an external field. Then the application of our method is 
straightforward. It yields results in accordance with those of other methods, 
i.e., at the transition point the interface between two ordered phases is wet- 
ted by the disordered, high-temperature phase. While previous results were 
obtained for q near 2, (2) or in two dimensions, (1'1.) ours are relevant for q 
large and for three or more dimensions. In two dimensions, the interface is 
one-dimensional, and low-temperature expansions in one dimension are 
somewhat ill-defined (see remarks at the end of Section 2). 

2. GENERALIZED B L U M E - C A P E L  M O D E L  

2.1. Low-Tempera ture  Phase Diagram: Pirogov-Sinai  Theory 

At each site x ~ ~d (d>~ 2), we have a "spin" variable Sx taking three 
values, - 1, 0, and + 1. The energy in a finite box A of a configuration SA, 
given a b.c. SA, (i.e., a configuration outside A) is 

H,(SAISAc)= ~. ISx-S.vl'~'-g ~ S.2~ (2.1) 
( . r v  ) ~ A ,~ f2~ x ~ A 

where ? > 0 (7 = 2 and ? = 1 being the cases most frequently considered). 
The equilibrium state in A is given by the probability distribution 

P(SA ]SA,) = Z-I(A]SA,) exp[ -flH~(SA [ SA~)] (2.2) 

where fl 1 is the temperature T and the partition function is 

Z(AISAc) = Z exp[ -flHu(S A I SA,)] (2.3) 
SA 

The free energy per spin 

~(fl,/~) = lim - ( f l  IA[) -1 log Z(AiSA,) (2.4) 
A ~  

is independent of SA,. 
For # equal zero in (2.1), the Hamiltonian H o has three ground states: 

Sx=  c~, Vxe 7/d, with c~ = - 1 ,  0, + 1, while there are only two ground states 
( + 1 and - 1 ) for/~ > 0 and only one (S~ = 0) for g < 0. 

It can be rigorously shown (y) (using the Pirogov-Sinai theory) that, at 
low temperatures, there exists a line ~,(fl), approaching zero as fl goes to 
infinity, on which three pure phases coexist. (By pure phase we mean here 
a Gibbs state (~2) that is translation-invariant and extremal, i.e., is not a 
combination of other Gibbs states). These phases are the limiting 
probability distributions obtained by letting A T Y/d in (2.2) with the b.c. 
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S x  = +1, V x e A  C (or = - 1  or =0). Each of these states can be described 
as a small perturbation of the corresponding ground state. For example, 
for the state corresponding to + 1, typical configurations will consist of a 
sea of + 1 spins with small islands of the other phases (0 or -1 ) .  

For/~ > #,(fl), there are two pure phases corresponding to the + 1 and 
- 1  ground states, while for /~<#,(fi), we have only one pure phase, 
corresponding to the 0 ground state. The magnetization of the + 1 or - 1  
phases jumps discontinuously across #,(fl) and the transition there is of 
first order. This is the rigorous picture at low temperatures. For higher 
temperatures the transition is expected to become of second order (see 
Fig. 1). Here, we shall restrict our attention to small /~ and small tem- 
peratures, i.e., to the first-order transition. 

Let us now review how one computes in perturbation theory the 
equation of the line #,(fi). Before doing this, we emphasize that the 
Pirogov-Sinai theory is much deeper than the perturbative argument given 
below (which is a somewhat streamlined version of standard methods(7's)). 
It actually gives a completely rigorous description of the phase diagram for 
fl large. Using this theory, one shows that the perturbation theory gives 
indeed the correct asymptotic expansion of/~t(fl) as fl ~ 00. (7t 

We define an e x c i t a t i o n  of a ground state as a configuration that coin- 
cides with this ground state outside a finite region. The support of an 
excitation (i.e., the complement of the infinite connected set where the con- 
figuration coincides with the ground state) can be decomposed into con- 
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Fig. 1. Phase diagram of the Btume-Capel model, d =  2, 7 = 2 (adapted from Ref. 1, Fig. 3). 
The line is T,(#) [equivalently, #,(fl)], on which three phases coexist. For T <  Tt(#), there are 
two phases ( +  and - ) ,  while there is only one phase (0) above T~(#). The solid part of the 
line corresponds to a first-order transition, while the dotted part is a second-order transition. 
The arrow is the line T'~ T,(#) considered in Section 2.2. 
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nected components. The restriction of an excitation to such a component is 
called an elementary excitation. Let us consider the set of excitations f2(E) 
for which each elementary component has an energy, computed with the 
Hamiltonian Ho, (2.1), less than or equal to E. Observe that, for any fixed 
E, the support of an elementary excitation is bounded. This property, 
which is shared by many systems but not, e.g., by the one-dimensional 
Ising model, is called regularity of the Hamiltonian and is essential for this 
perturbative analysis to work. t-2(E) is the configuration space of a "gas" of 
elementary excitations that feel a hard-core exclusion, since the supports of 
different excitations have to be disjoint from each other. If we take, for 
example, E = 2 d ,  then the elementary excitations of the 0 ground state 
correspond to isolated + 1 spins or - 1  spins surrounded by 0 spins, and 
the excitations of the + 1 ground state correspond to 0 spins surrounded 
by + 1 spins ( -  1 spins are not permitted at this order because their energy 
is 2~2d> 2d). Let 

Z~(A,/~, kt) = ~E exp[ -/3H,,(SA I c~)] (2.5) 
SA 

where the sum is restricted to the gas of elementary excitations of the 
ground state e and we have b.c. Sx = e, x e A C. For example, 

Z~d( A,/3, I*) = ~2aexp[ -/~(N+ + N ) (2d-  ~t)] 
SA 

where N+ =N+(SA)  (resp. N ) is the number of elementary excitations 
consisting of isolated + 1 spins (resp. - 1  spins). On the other hand, 

2d Z+(A,/3,/~) = [exp(/3# IAI )] ~2aexp[- /3Xo(2d+ #)] 
SA 

where No is the number of isolated 0 spins, and ~2d_ Z2d _ - - _ + ,  by symmetry. 
The thermodynamic limit of the free energy of the gas of elementary 

excitations 

~,e(/3,/,) = lim -(/3 IA]) l log Z~(A, fl, y.t) (2.6) 
A ~ o ~  

exists, by the usual subadditivity arguments, for any/3 and/~. 
In the above examples, we obtain for/3 large and t~1 < 2d 

2 
~02J(/3,/*) ~ - o  exp]- - / 3 ( 2 d -  #)3 (2.7) 

P 

1 
~2+a(/3, ~) = ~2a(/3, #) ~ _#  _ -a expl- -/3(2d + #)] 

P 
(2.8) 
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In general, there exists, for any fixed E, constants #(E) and fl(E) such that, 
for Igl < #(E) and fi > fl(E), O~(fl, #) is equal to the energy of the ground 
state c~, plus a convergent series in a finite number of variables 
(1/fl) exp [ - flEi(/~) ], where Ei(#) denotes the energy of the ith excitation 
as a function of #. [We emphasize that the excitations are ordered so that 
E,(0) < E2(0 ) < . . . . ]  For  a proof of convergence, see Ref. 7. In general, one 
expects the convergence to be nonuniform in E. 

The transition line/~,(fl) is obtained by solving the equation 

oE+ (fl, # ) =  Oe (fi, ~ ) =  O0E(fi, /~) (2.9) 

where the first equality holds by symmetry. This yields #,(fl) up to an error 
of order o(e ~E). From (2.7)-(2.9) we find that, to first order, # , ( f l )~  
( 1/fi) exp ( - 2dfi ), independent of 7. 

Remark. For fixed E, O e is well-defined for all # and ft. In particular, 
0F  is defined for values of # where the only pure phase corresponds to the 
0 ground state, i.e., # < #,(fi), and vice versa. It is natural to ask: What is 
the exact meaning of OE+ for those values of/~? It cannot be equal or close 
to the thermodynamic limit of the free energy defined with + 1 b.c., since 
this limit is independent of the b.c. In fact, ~o E would be equal, up to terms 
of order e-~E, to the true free energy. It cannot be said either that OE( + 1 ) 
is the analytic continuation of the true free energy, starting from the region 
# >/2,(fl), because such an analytic continuation is, in general, impossible 
(see Ref. 13 for rigorous results). We do not in fact have any precise answer 
to the above question; it is presumably related to the "metastable free 
energy" of the + phase. All we can say at present is that ~ for g r is 
a convenient tool to compute the transition line. 

2.2. Interfaces and Wett ing 

Let us fix/~ > 0 small and let the temperature be raised, starting from 
zero. Then we have two pure phases, + 1 and - 1 ,  and we reach a first- 
order transition at a temperature T, [such that/~ = #,(fi,)] where the three 
phases coexist and above which only the 0 phase is present (see Fig. 1). 

In order to study interfaces, one introduces the + / -  b.c.: Put sx = +1 
on the upper half of the boundary of a rectangular box A and sx = - 1  on 
the lower half. Then we ask: what state is obtained in the thermodynamic 
limit with these b.c.? For T small, the answer is known and depends on the 
dimension. For d>~ 3, a "rigid" interface will separate the space into a + 1 
phase and a - 1  phase. (14'15) For d =  2, however, the interface, being a line, 
will fluctuate "out of sight," and the resulting state will be a convex com- 
bination of the + 1 and - 1  phases. (16 18) It is important to realize that, 
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despite these fluctuations, the interface is locally very sharp at low tem- 
peratures and separates the + 1 spins from the - 1  spins; in particular, 
there are very few 0 spins (this can be proven using the method of Ref. 19). 

The question that we try to answer now is: what happens when TT Tt? 
Two scenarios are possible: (a) the interface between the + and the - 
phases remains sharp us to Tt (locally sharp if d =  2) or, (b) the interface is 
"wetted" by the 0 phase, i.e., a thick layer of the 0 phase, whose thickness 
diverges as TT Tt, separates the + and the - phases. At T, itself, one 
would then obtain the pure 0 phase in the thermodynamic limit with these 
+ / -  b.c. In case (b) a next question is: how does the thickness of the 0 
layer diverge? In particular, does this happen continuously, or through a 
sequence of layering transitions? ~2~ 

We have no rigorous answer to these questions at the present time. 
However, as we have just seen, the bulk properties can be rigorously 
decided on the basis of a perturbative calculation, using restricted free 
energies. We propose to do a similar calculation with free energies 
associated to the different interfaces, i.e., with surface tensions. 

To carry out this program, we must find out which interfaces will be 
the ground states, in the thermodynamic limit, when we impose + / -  b.c. 
The answer depends on ~/: For  y < 1, there is just one ground state, given 
by a flat + / -  interface, while for y > 1 the ground state is infinitely 
degenerate, with n/> 1 number of layers of 0 spins. For  7 = 1, we can have 
both situations: a sharp + / -  interface or several layers of 0 spins. Let us 
see what happens to these ground-state interfaces along the transition line, 
#~(/~). For 7 < 1, one expects the + / -  interface to remain sharp at low 
temperatures (this can probably be proven using the methods of Ref. 15). 
For 7 > 1, the thickness of the layer of 0 spins would tend to infinity in the 
thermodynamic limit, because of the entropic repulsion between the inter- 
face separating the + and the 0 spins, and the one separating the 0 and the 

- spins. This entropic repulsion can be analyzed in terms of a gas of low- 
energy excitations of these interfaces, in a way similar to the one followed 
here. ~1~ Thus, the delicate point is 7 = 1. In order to do as in the bulk, we 
introduce a surface tension of low-energy excitations of the interfaces. 

Let us first define the "true" thermodynamic surface tensions between 
the different phases: 

Z(AI~, 6) 
%'6(/3' kt)= L~lim - (~L a-~) ' l og  [Z(Ar~)Z(A]6)]I/2 (2.10) 

where IAI = L  a and where Z(AI~, 6) is the partition function in A with 
b.c. on top and 6 b.c. on the bottom of A. The two other partition functions 
have homogeneous b.c., all c~, or all 6; c~, 6 =  +1, 0, - 1 ;  ~ r  Now we 
define the corresponding restricted partition function E Z~.6(A) by summing 

822/46/5-6-~5 
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only over configurations that coincide with a sharp ~/~ interface outside A 
and differ from the ~/6 ground state only on connected sets where the 
energy of an elementary excitation does not exceed E. The restricted surface 
tension r~ie(fl, #) is defined with this partition function, and with Z~(A) 
and Z~(A), defined in (2.5), inserted in (2.10). We now compute these 
restricted surface tensions, and if we find, as the computation below does, 
that 

E u,)> vgi-(fl, u,)= u,) 

for some E and large fi, then we expect that the + / -  interface will be wet- 
ted by an infinite layer of the 0 phase at low temperatures. If the reverse 
inequality was to hold, then one would expect the + / -  interface to remain 
sharp even when all three phases coexist. Observe that, if the inequality 
holds in some direction for some E as fl --+ oo, then it also holds for E' > E 
in the same limit, since the inclusion of excitations of energy larger than E 
only modifies the free energies by terms o(e ~u). 

For TE+,0, in d~>3, one sees that the lowest energy excitations 
EE= 2 ( d -  1)] correspond to the insertion of either a 0 spin in the + half- 
space, or a + spin in the 0 half-space (see Fig. 2a). Thus, 

flrU+,o ,~ fl - 2 exp[ - 2 ( d -  1 )fi] 

+ + + + + + + + + + 

+ + 0 + + 0 0 + 0 0 

0 0 0 0 0 0 0 0 0 

(a) 

+ + + + + + + + + + 

+ + 0 + + 0 

Fig. 2. 

(b) 

Lowest energy excitations of the interfaces in the Blume-Capel model (7 = 1): 
(a) +/0 interface; (b) + / -  interface. 
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[since # t ( /~)~exp(-2d/~) ,  it can be neglected at this order, and so can the 
excitations of Z~, Z e, which are of order exp(-2d/3) ] .  For E r+, , o n e m a y  
insert a 0 spin either in the + or in the - half-space (see Fig. 2b). The 
insertion of a + spin in - spins or vice versa costs a higher energy. Thus, 

/~r~, ~ / ~ - 2 e x p [ - 2 ( d -  1)/~] 

and 
/~(2Te+, - r e+  ) ~ - 2 e x p [ - 2 ( d - 1 ) / ~ ] < 0  

We expect, therefore, that at least for small g and T, an infinite layer of the 
0 phase will wet the + / -  interface at T,. 

Remark l. What  happens in two dimensions? There the interface is 
really a one-dimensional system; it is (therefore) not a regular system, i.e., 
there are too many excitations with a given energy corresponding to steps 
in the interface and there is no convergent expansion for the gas of low- 
energy excitations, at least not any obvious one. So, strictly speaking, the 
method outlined above does not work for d =  2. However, our calculation 
still suggests that one gains entropy by inserting layers of 0 spins, so we 
expect a similar result. This is certainly true for 7 > 1, where one gains 
energy. This model provides a nice illustration of the difference between 
wetting and roughening: For T <  T,, the + / -  interface will be sharp, but, 
since it is a line, it will fluctuate widely, so that in the thermodynamic limit 
one obtains a Gibbs state that is a convex combination of the + and the 
- phases. On the other hand, at T =  T,, the same b.c. will lead to the pure 
O state. 

Remark 2. Let us emphasize some differences between the cases 
> 1 and 7 = 1. In both situations wetting is expected to occur because the 

(restricted) free energy of a + / -  interface is higher than the combined free 
energies of + / 0  and a 0 / -  interface. However, for 7 > 1, say 7 = 2, the dif- 
ference between these free energies is due to the ground state and is of 
order one (per unit surface area), while for 7 = 1 it is due to low-energy 
excitations and is of order (1//~)e -cp for some c >  0, as we have just seen. 

This has two consequences: First, for 7 > 1, there will be, even for T 
much below T,, one (or several) layers of zeros, while for 7 = 1 this is much 
less likely. Thus, the divergence of the width W o of the layer of zeros 
should occur only for T very close to T, when 7 = I. Second, since the free 
energy difference that is responsible for this divergence is small, we expect 
it to be difficult to observe in numerical simulations because of boundary 
effects. This is especially true at low temperatures, even though the 
correlation length is small there, and one might think that finite-size effects 
are small, too. 
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So we expect that a numerical simulation for 7 = 1 would give different 
results than the one done for 7=2.(11) However, we see no theoretical 
reason why the true asymptotic divergence (in infinite volume, when TT T~) 
of Wo(T) should be different for 7 = 1 or 7 = 2. Rather, we conjecture that 
the scaling theory (25) relating W o to the ground state of a Schr6dinger 
operator via a Feynman-Kac formula also applies to 7 = i; this implies 
that we expect a divergence of the form Wo(T ) ~ I T -  Tel-1/3. This remark 
may be relevant to understanding the numerical data obtained for the 
Potts model, ~ as we shall discuss in the next section. 

3. THE  POTTS M O D E L  

3.1. Phase D iagram 

At each site x E 2 a we have a variable Sx = 1,..., q and the Hamiltonian 
is given by 

H(s~)=-  ~ 6(sx-s~) (3.1) 
<xy) 

where 3 ( . ) = 0  or 1 is the Kronecker delta. (Boundary conditions, 
equilibrium states, etc., can be introduced as in Section 2.) 

It is known (21'22) that, for q large enough, the phase diagram is as 
follows: For/~ large, there are q pure phases, with most spins in each phase 
equal to one of the q possible values. At high temperatures, there is only 
one phase, the disordered one. The transition between the two regimes is of 
first order: At /3, ( ~ d  l l ogq )  the energy [ = ( 3 ( S x - S . v ) )  ] and the 
"magnetization" [ = ( 6(Sx - m) )  in the mth phase] are discontinuous. 

For q large and/3 >/?t, mixed b.c. (Sx = r on the top, Sx = m -r r on the 
bottom) produce a non-translation-invariant state if d>~ 3 or a fluctuating, 
but (locally) sharp, interface if d =  2. The question is whether this interface 
is wetted by the disordered phase at/~t. While discussing this, we shall not 
consider the way in which this layer of disordered phase increases in 
thickness as T approaches T t. 

Before carrying out the analysis, we shall argue that this model is, for 
q large, very similar to the Blume-Capel model for/~ large. Then we shall 
perform a perturbative calculation in q-1/d for the wetting problem, which 
will be the analogue of the low-temperature expansion of the preceding sec- 
tion. 

To do this, we rewrite the model in a form that makes the analogy 
with the Blume Capel model more transparent. For each bond ( x y ) ,  we 
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introduce a variable tz~ = 6(Sx - Sy) = 0 or 1. The partition function can be 
rewritten as 

Z(A)=~exPIfl ~ 6(Sx-Sy)l= ~ e x p l  ~ flt~y+S(tA) 1 (3.2) 
S A (xy )  t v, = 0,1 ( xy )  

where S(tA)=log(number of configurations consistent with a given 
assignment of { t~y }). Of course, this number may be zero, in which case we 
say that the configuration of the t variables is not admissible, and we 
restrict the sum in (3.2) to admissible configuration. S(tA) may be con- 
sidered as an entropy term, but we shall consider it below as an energy 
term. Let/~ = fl log q and define 

- - / ~ ( t A ) = ~  Z t x y + S ( t A ) / l o g q  (3.3) 

Then 
Z(A)= ~ *  e x p E - ( l o g  q) H(tA) ] (3.4) 

txy = 0,1 

the sum ~ *  being over admissible configurations. 
This representation calls for the following observations: 

1. The number of values taken by the variables tx.v is reduced to two, 
uniformly in q. Moreover, the energy per bond is bounded uniformly in q, 
since it is easy to see that 0 ~< S(tm)<~ IA[ log q if tA is admissible. 

2. In (3.4), log q plays the role of/~ in the Blume-Capel model, while 
will play the role of #. More precisely, one observes that, for f l=  d - l ,  

there are two "ground states" when log q ~ oo, the configuration t,_ V = 0, 
Vxy, and the one with t<v = 1, Vxy. Indeed, when all the t variables are 0, 

S(tA) = [logq+O(q-i)] IAI 

while if all t's are + 1, S(t A) = log q, but Z(~y) tx~. ~ d[A[, as A ~ oo. So # 
in the Blume-Capel model is replaced here b y - ~ - d  1. There is a line 
~,(q), similar to /~,(/~), of first-order transitions on which two phases 
coexist, one with most t~  variables equal to 1 and one with most equal to 
0. From this point of view the degeneracy between the q phases is ignored. 
For/~ r there is only one phase. Of course, in the present interpretation, 
the model is somewhat peculiar, since the Hamiltonian contains a "tem- 
perature-dependent" term, i.e., S(tA)/logq [it does depend on q and 
(log q)-1 is now playing the role of the temperature].  However, this depen- 
dence is weak for q large (of order l/q), and provided we take it into 
account in our calculations, it does not invalidate our method. 

To illustrate what the low-energy excitations are in this model for the 
disordered phase, let us compute the first one: It is given by one t~y = 1, all 



1026 Bricmont  and Lebowitz 

other t's being 0. To leading order, one loses a factor of q in the "entropy" 
term, exp S(tA), and one gains a factor exp/~ from the energy, so that this 
excitation has a weight e~/q~q ~-a)/d for / ~ = d - l l o g q .  Just as in the 
Blume-Capel model, one may compute perturbatively ~(q)  (see Ref. 23 or 
Ref. 24, where a more systematic but conceptually equivalent approach is 
used). One obtains to leading order 

/~,=~, log q ~ d  l logq+q !l-d)/~ 

3.2. In ter faces  and W e t t i n g  

As in the Blume-Capel model, we introduce surface tensions and 
restricted surface tensions between any two phases of the model. By sym- 
metry, we need only to consider them for two ordered phases, say 1 and 2, 
and for an ordered and the disordered phase, say I-D. First of all, it 
should be clear that the "ground-state energy" of a 1-2 interface is twice 
that of a 1-D interface, so that we have essentially the same degeneracy 
here as in the Blume-Capel model for/~ = 0 and 7 = 1 (an arbitrary number 
of layers of disordered bonds may be inserted between the 1 and the 2 
phases). Indeed, for the 1-2 interface, the ground-state energy is just 1 (per 
unit of surface), since one bond in the interface is broken and no entropy is 
gained. In order to compute the "ground-state energy" of the 1-D interface, 
we consider a rectangle A, with A ~ being the top half, A ~ the bottom half. 
We denote by ]A] the number of sites in A, ]A[ = 2  ]A~ = 2  !All, 0A = 
{ ~xy)]x E A, y E A~), b(A) the number of bonds in A, b(OA) the number of 
bonds in 0A, and similarly for A ~ A 1. The common boundary P =  
0A~ 0A z between the two subsets of A is called the interface and b(P) is 
the number of bonds in P. In A 1 we have only the (ordered) ground state 
1, and in A ~ we have only the disordered "ground state" (all txy = 0). The 
tx~.'s are also 0 across the interface. Let Z~ be the corresponding par- 
tition function, where the subscript 0 refers to the fact that we do not allow 
any "excitations" of the "ground states." Z~(A) Fresp. Z~ is the 
corresponding partition function with the ground state 1 (resp. D) 
everywhere in A. Then we have 

log Z~ ~[b(A) + b(c~A)] 

log Z~ = log S(txy = O, Vxy) 

= [log q +  O ( ~ ] ]  tA ,+O(~)b(~A)  
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log Z~ = fi[b(A ~) + b(OA 1 ) - b(P)] 

+ [ l o g q + O ( ~ ) ;  IA~ ~ 

Therefore, 

fl~~ ) = --Iog Z~ 
[ZO(A) ZO(A)] ~/2 

because the bonds in the interface are ordered in Z~ but not in Z~ 
Thus, the "ground-state energy" of the interface (as q ~ oe) is 1/2 (per unit 
surface), i.e., exactly one-half the ground-state energy of a 1-2 interface. 

Now we have to compute low-energy excitations of the interfaces. To 
be specific, consider d =  3. We start with the 1-2 interface: To leading 
order, we can insert one of the q - 2  states different from 1 and 2 either 
into the 1 half-space or into the 2 half-space (see Fig. 3a). This has a weight 
e -5# (for d =  3) for the energy times q - 2  for the entropy, so to leading 
order, using fit ~ 1 log q, we have 

fl,V~2~ fi,-- 2q -2/3 

The lowest excitations of Zf(A) are of higher order. 

I I i i i i i I i i 

2 2 q 2 2 1 i q 1 1 

2 2 2 2 2 2 2 2 2 2 

(a) 

I l I i 1 I i I i 

1 I 

ql q2 

Fig. 3. 

q6 i 1 ql q2 l q3 q~ 

q3 q4 q5 q5 q6 q7 q8 q9 

(b) 
Lowest energy excitations of the interfaces in the Ports model: (a) 1/2 interface; (b) 

1/D interface. 
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Now we compute rfD. We may either insert one spin different from 1 
in the ordered half-space (see Fig. 3b), which carries a weight e -5~ (energy) 
times q (entropy), or we may insert one spin equal to one in the disordered 
phase. There one loses q on the entropy side, but gains e ~ in the energy. 
However, there is one more term to leading order. As we saw in Sec- 
tion 3.1, the lowest order excitations of the disordered phase have a weight 
equal to q 2/3 (for /~t ~ l l o g  q). When we compute the restricted surface 
tension r E 1.D, we have to compare the number of these excitations appearing 
in �89 In Z~(A) and in in Z~D(A ). However, in Zf.D(A ) these excitations can- 
not be located across the interface, while they may occur there in Ze(A). 
This adds �89 to / ~ D ,  where the �89 comes from the �89 multiplying 
ln Z~(A) above (this is similar to the calculation of the "ground-state 
energy"). The final result for vfD is 

fl,rft) ~ �89 2q 2/3 + �89 -2/3 = 1 log q - 3q-2/3 

and, comparing the two results, we have that in d =  3, f l , (2r fD-r f2  ) 
_q-2/3 < 0. We therefore expect wetting by the disordered phase at T, in 
d>~ 3. We expect wetting to occur also in d =  2, but the remarks made at 
the end of Section 2 can be repeated here. In particular, this model is 
analogous to the Blum~Capel  model with ~ = 1, in the sense that the dif- 
ference between the restricted surface tensions is produced by low-energy 
excitations and not by a difference in the "ground-state energies." 
Numerical simulations were actually done by Selke for q =20,  ~1t and one 
sees that the width Wo of the disordered layer is much smaller than in the 
Blume-Capel model for 7 = 2-(1'11) Wo appears to diverge much faster than 
in the 7 = 2 Blume-Capel model both when the size of the box increases 
and when the temperatures increases toward T,. However, the preceding 
discussion suggests that it may be difficult to find the true asymptotic 
behavior of this width in feasible numerical simulations, because of the 
smallness of the free energy difference responsible for its divergence. 

It is also quite possible that W o appears to diverge faster only because 
at the temperatures where the numerical simulations are made, one sees 
only the first few layers of the disordered phase, while the corresponding 
layers are present at much lower temperatures in the 7 = 2 Blume-Capel 
model. In any case, we do not see any theoretical reason to expect a dif- 
ferent exponent for W 0 in the Potts model than in the 7 = 1  or 7 = 2  
Blume Capel models [i.e., Wo(r)~ IT--r,] 1/3]. 
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